GEOGRAPHICAL SCIENCES

Methodological aspects of the quota of transboundary waters in Central Asia

Rafikov V. (Republic of Uzbekistan) Методические аспекты квотирования трансграничных вод Центральной Азии

Рафиков В. А. (Республика Узбекистан)

Рафиков Вахоб Асомович / Rafikov Vakhob - кандидат технических наук, заведующий лабораторией, лаборатория геоэкологии, Институт сейсмологии Академия наук Республики Узбекистан, г. Ташкент, Республика Узбекистан

Аннотация: в статье анализируется схема водоотделения, которая вероятно может удовлетворить разумные социально-экономические и экологические интересы бассейновых государств Центральной Азии.

Abstract: the article analyzes the water allocation scheme that can probably satisfy a reasonable socio-economic and environmental interests of the riparian states of Central Asia.

Ключевые слова: Аральское море, гидрологический режим, водные ресурсы, использование водных ресурсов, регулирование речного стока.

Keywords: the Aral Sea, hydrological regime, water resources, water use, river flow regulation.

1. Состояние водных объектов, изменчивость их ресурсов.

Предмет рассмотрения ограничен водными объектами части Центральной Азии, которую занимают бассейны больших рек Амударьи и Сырдарьи, хотя обсуждаемая тема актуальна, повидимому, и для всего субконтинента. Для рассматриваемой задачи существен исторический аспект водообеспечения. Данные гидрологических наблюдений представили возможным наметить три этапа формирования и использования водных ресурсов.

Первый – естественный, имел место до новой эры. Второй – условно-естественный, начался в античное время и завершился в первой половине прошлого века из-за масштабного изъятия речных вод. Третий этап характеризуется исчерпанием располагаемых ресурсов, главным образом, в интересах орошаемого земледелия. При этом речная сеть функционирует как основа водохозяйственных систем. На Амударье такая система обеспечивала сезонное регулирование стока с коэффициентом ~ 0,8-0,85 [4]. На Сырдарье было достигнуто многолетнее регулирование с коэффициентом ~ 0,9-0,93 [3]. Комплексные гидроузлы на реках комплектовались гидроэлектростанциями, а выработка электроэнергии производилась по ирригационному графику. Основная часть гидроузлов и водохранилищ размещена в горных частях субконтинента. С достижением независимости горные бассейновые государства изменили режим водопользование на гидроэнергетический. Из-за этого и отсутствия у равнинных государств гидротехнической инфраструктуры для контррегулирования в ирригационный режим наносится ущерб водообеспечению орошаемого земледелия. В средний по водности год такие ущербы достигают на Амударье и Сырдарье до 6-8 км³, а в маловодные годы вегетационный сток в среднее и нижнее течение сокращается еще на большую величину. Стохастический по своей природе гидрологический процесс приобретает еще большую неустойчивость.

Однако следует заметить, что верховья – как были, так и остались областями формирования и использования стока; средние течения – транзита и изъятий стока с боковой приточностью; низовья – областями рассеивания остаточного стока в окультуренных ландшафтах [5]. Но не стало бассейнового базиса стока – Аральского моря. Большая река Амударья «приобрела» слепой конец, а большая река Сырдарья пока «впадает» в восточную часть остаточного водоема, того что остался от Аральского моря.

Располагаемые водные ресурсы обозначенных этапов приведены в табл. 1 с учетом оценок [2, 3, 4, 5 и др.].

Приведенные оценки иллюстрируют факт исчерпания ограниченных водных ресурсов бассейна Аральского моря, но никак пока не истощения. Последнее вероятно будет протекать при глобальном изменении климата и уже началось из-за сокращения горного оледенения [2].

Отмеченный в [2, 3, 4] дефицит водных ресурсов характеризует неудовлетворенный спрос на воду при достигнутом технологическом уровне водосбережения. Таков ресурсный аспект проблемы межгосударственного вододеления.

Таблица 1. Располагаемые водные ресурсы	(примерно 50% обеспеченности, км³/год)
---	--

№/п	Река, бассейн	Финальная фаза условно- естественного режима	Ирригационный режим	Энергетический режим
1.	Река Амударья	$75,3 \pm 3,8$ [5]	67,9 ± 3,4 [4]	70.9 ± 3.5 [2]
1.1	Верхнее течение	$75,3 \pm 3,8$	$67,9 \pm 3,4$	$70,9 \pm 3,5$
1.2	Среднее течение	$64 \pm 3,2$	~60 ± 3 [4]	$63,0 \pm 3,1$
1.3	Нижнее течение	$48 \pm 2,4$	~28 ± 1,4	~30 ± 1,5
1.4	Поступление в Аральское море	38 ± 1,9 [5]	~5,0 ± 0,2 [4]	-
2.	Река Сырдарья	34.9 ± 1.8 [5]	34,8 ± 1,7 [3]	36,5 ± 1,8 [2]
2.1	Верхнее течение	$24,3 \pm 1,2$ [5]	$25,2 \pm 1,2$	$26,9 \pm 1,3$
2.2	Среднее течение	27,0 ± 1,3 [5]	24,1 ± 1,2	$23,0 \pm 1,1$
2.3	Поступление в Аральское море	15,6 ± 0,8 (?)	~5,9 ± 0,3 [3]	~4,5 ± 0,2
3.	По бассейну Аральского моря			
3.1	Водные ресурсы	$110,2 \pm 5,6$	~102,7 ± 5,1	$107,4 \pm 5,4$
3.2	Поступление в Аральское море	$53,6 \pm 2,7$	~10,9 ± 0,5	~4,5 ± 0,2
3.3	Безвозвратные потери стока относительно моря	$56,6 \pm 2,9$	~91,8 ± 4,6	~102,9 ± 5,1

2. Особенности водообеспечения.

Жизненный уклад населения субконтинента издревле основывался на орошаемом и горном земледелии, животноводстве, рыбном и охотничьем промыслах, кустарных производствах и т. д.

Индустриализация началась с конца позапрошлого века. Несмотря на индустриальный рост, к достижению государствами субконтинента независимости, они оставались аграрно-индустриальными и пока пребывают таковыми. Большая часть населения -2/3 – сельское, но его вклад во внутренний валовой продукт достигает только 1/3. И это несмотря на то, что орошаемое земледелие за это время приростилась по площади в более чем два раза. Эта же отрасль является крупнейшим водопотребителем. На её долю приходится до 90 % забора располагаемых водных ресурсов.

Гидроэнергетика является основным конкурентом орошаемого земледелия из-за фактора сезонности. Горные государства заинтересованы в развитии гидроэнергетики [2], потенциал которой оценивается в 590 КВтч., экономически доступный в ∼150 КВтч [1]. Освоенный потенциал гидроэнергии по оценкам разнится от 32-34 [1] до 37-45 [3] КВтч. Но основная особенность энергетики горных государств заключается в том, что гидроресурсы ныне обеспечивает до 90% их энергетического баланса. Таковы интересы бассейновых государств, удовлетворение которых требует их оптимизации.

3. Правовой формат и перспективы водообеспечения.

Правовой формат решения рассматриваемой проблемы определяется положениями международного права и таких его разделов, как например, «Правила пользования водами международных рек» (Хельсинки, 1966 г.), «Конвенция по охране и использованию трансграничных водотоков и международных озер» (Хельсинки, 1992 г.), «Конвенция о праве несудоходных видов использования международных водотоков» (Нью-Йорк, 1997 г.) и др. Такие наработки международного права являясь руководством к действию, однако недоучитывают конкретику субконтинента. Принципиально, во-первых, то, что наносятся ущербы орошаемому земледелию — многовековой экологической нише населения. Во-вторых, безвозвратные потери стока приводят к исчерпанию водных ресурсов, а возврат — к засолению вод и ландшафтов. Поэтому в условиях Центральной Азии квотированию подлежат водопользование, водозабор и возврат вод в реки, безвозвратные потери. И все это нужно регулировать вдоль продольного профиля главных рек, с тем, чтоб контролировать как количество, так и качество вод. Последнее особенно значимо для низовий больших рек, так как они испокон веков были и пока остаются единственными источниками питьевого водоснабжения населения.

Это необходимо для реализации принципов «справедливого, разумного равноправного использования трансграничных водотоков», «прецедента», минимизации «трансграничных воздействий» или их предотвращения и т.д.

Таблица 2. Эскиз квот трансграничных вод по Центральной Азии

	Наименование	Вероятные в ближайшей перспективе квоты на			
№ п/п	водотока, страны 2	BΠ °)/ B3	сброс °) ВВ в реки	БВЗП°)	
1		3	4	5	
1	Бассейн р. Амударьи	52,4*) / 58,4	11,4	47,0	
	В том числе:				
1.1	Верхнее течение	52,4*) / 16,3	5,4	10,9	
	Из них:	141/40	1.5	2.2	
1.1.1	Афганистан	14,1 / 4,8	1,5	3,2	
1.1.2	Таджикистан	33,8 / 6,8	2,3	4,5	
1.1.3	Узбекистан	3,6 / 4,5	1,5	3,0	
1.1.4	Кыргызстан	0,9 / 0,2	0,1	0,1	
1.2	Среднее течение	41,5 / 20,7	2,5	18,2	
	Из них:				
1.2.1	Туркменистан	- / 13,5	0,7	12,8	
1.2.2	Узбекистан	- / 7,2	1,8**)	5,4	
1.3	Нижнее течение	11,0 / 21,4	3,5	17,9	
	Из них:				
1.3.1	Туркменистан	- / 7,2	-	7,2	
1.3.2	Узбекистан	11,0(?) / 14,2	4,0(+1,8)	12,0	
1.3.3	Сброс в Аральское море		2,2		
2	Бассейн р. Сырдарьи	27,2*) / 39,3	14,8	24,5	
	В том числе:	., , .	,		
2.1	Верхнее течение	$(20,1)^{*)}/14,1$	6,9	7,2	
	Из них:	(==,=, , = -,=		.,_	
2.1.1	Кыргызстан	(20,1) / 3,8	1,9	1,9	
2.1.2	Таджикистан	(12,9) / 1,5	0,7	0,8	
2.1.3	Узбекистан	(12,9) / 8,8	4,3	1,5	
2.1.3	Среднее течение и ЧАКИР***)	, , , , ,	5,2	7,0	
2.2	Из них:	(18,2) / 12,2	3,2	7,0	
2.2.1		0.5 / 1.9	0.5	1.2	
2.2.1	Казахстан	0,5 / 1,8	0,5	1,3	
2.2.2	Кыргызстан	2,7 / 0,2	0,1	0,1	
2.2.3	Таджикистан	- / 1,0	0,2	0,8	
2.2.4	Узбекистан	2,1 / 9,2	4,4	4,8	
2.3	Нижнее течение	(13,0) / 13,0	2,7	10,3	
	Из них:				
2.3.1	Казахстан	13,0 / 13,0	2,7	10,3	
2.3.2	Сброс в Аральское море	-	2,7	-	
3	Всего по южному склону бассейна Аральского моря	79,6*) / 97,7	26,2	71,5	
2.1	В том числе:	141/40	1.5	2.2	
3.1	Афганистан	14,1 / 4,8	1,5	3,2	
3.2	Казахстан	13,5 / 14,8	3,2	11,6	
3.3	Кыргызстан	22,8 / 4,2	2,1	2,1	
3.4	Таджикистан	33,8 / 9,3	3,2	6,1	
3.5	Туркменистан	20,7 / 20,7	0,7	20,0	
3.6	Узбекистан	25,0 / 43,9	15,5	28,4	
3.7	Сброс в Аральское море		6,7**)		

 $^{^{*)}}$ вероятная величина речного стока; $^{**)}$ в т.ч. сброс по Правобережному коллектору 1,8 км 3 со среднего течения; °) ВП – водопользование; ВЗ – водозабор; ВВ – возвратные воды; БВЗП – безвозвратные затраты и потери; *** ЧАКИР — Чирчик-Ахангаран-Келесский ирригационный район.

В таблице 2 приведена рабочая версия квотирования трансграничных вод с учетом вероятного сокращения объемов стока из-за глобального изменения климата. В этих оценках использованы прогнозы изменения водных ресурсов, приведенные в [2, с. 47]. Из них следует, что в начале второй четверти текущего столетия располагаемые водные ресурсы бассейна Амударьи вероятно составят $52,4 \pm 5,8$ км 3 /год, Сырдарьи – $27,2 \pm 3,1$. В маловодную эпоху, таким образом, начнется истощение водных ресурсов и изменится, повидимому, структура их формирования.

Таким в общей схеме просматривается вододеление, которое вероятно может удовлетворить разумные социально-экономические и экологические интересы бассейновых государств.

Заключение

В ожидаемую маловодную эпоху располагаемые водные ресурсы субконтинента вероятно сократятся почти на четверть, в сравнении с предыдущим столетием. Флуктуации стока, повидимому, только усилятся. Поэтому маловодные годы грядущего будут, по-видимому, еще более провальными для водообеспечения. Эти ожидания обусловливают социально-экологический императив заблаговременной адаптации экономики и жизненного уклада населения к пессамальным условиям ближайшей перспективы.

Для этого, прежде всего, в соответствии с процедурами международного права, нужно выработать правила пользования трансграничными водотоками и их ресурсами применительно к конкретике субконтинента. Нужно разработать и реализовать на бассейновых и национальных уровнях программы тотального водосбережения. Нужен технологический прорыв в экономике и мобилизация общественного сознания для предотвращения (или уже преодоления!) экологического бедствия.

Литература

- 1. *Рафиков В. А.* Проблемы управления трансграничными водными ресурсами в Центральной Азии // Экологический вестник Узбекистана. Ташкент, 2012. № 4. С. 15-18.
- 2. Rafikov V. A., Mamadjanova G. F. The forecast of changes of hydrological and hydrochemical conditions of Aral sea // Editorial office for Journal of Geodesy and Geodynamics. China, 2014. Vol. 5. № 3. P. 55-58.
- 3. *Rafikov V. A., Rahmatullaev X. L.* Compendium problems of trans-boundary water quota allocation in Central // Asia. Journal of Interactive-plus. Austria. Vena, 2016. № 8. P. 8-17.
- 4. Усиление регионального сотрудничества по рациональному и эффективному использованию водных и энергетических ресурсов в Центральной Азии. Нью-Йорк: ООН, 2003. 125 с.
- 5. Шульц В. Л. Гидрография Средней Азии. Ташкент: САГУ, 1958. 117 с.